Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.

نویسندگان

  • Anton Liaimer
  • Eric J N Helfrich
  • Katrin Hinrichs
  • Arthur Guljamow
  • Keishi Ishida
  • Christian Hertweck
  • Elke Dittmann
چکیده

Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation of an alternative sigma factor in the cyanobacterium Nostoc punctiforme results in increased infection of its symbiotic plant partner, Anthoceros punctatus.

An alternative group 2 sigma factor was identified in the nitrogen-fixing, symbiotically competent cyanobacterium Nostoc punctiforme and designated sigH. Transcription of sigH was specifically induced within 1.5 h following exposure of N. punctiforme to its symbiotic plant partner, Anthoceros punctatus. A mutation in sigH resulted in a sixfold-higher initial infection of A. punctatus tissue wit...

متن کامل

Diverse roles of the GlcP glucose permease in free-living and symbiotic cyanobacteria.

Certain cyanobacteria can form symbiotic associations with plants, where the symbiont supplies the plant partner with nitrogen and in return obtains sugars. We recently showed that in the symbiotic cyanobacterium Nostoc punctiforme, a glucose specific permease, GlcP, is necessary for the symbiosis to be formed. Results presented here from growth yield measurements of mutant strains with inactiv...

متن کامل

Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation.

Three mutant strains (ntcA, hetR, hetF) of the cyanobacterium Nostoc punctiforme unable to differentiate heterocysts were characterized and examined for their ability to form a symbiotic association with the bryophyte Anthoceros punctatus. Previously unknown characteristics of the N. punctiforme hetR mutant include differentiation of chilling-resistant akinetes, while vegetative cells of the nt...

متن کامل

Flavonoid-induced expression of a symbiosis-related gene in the cyanobacterium Nostoc punctiforme.

The flavonoid naringin was found to induce the expression of hrmA, a gene with a symbiotic phenotype in the cyanobacterium Nostoc punctiforme. A comparative analysis of several flavonoids revealed the 7-O-neohesperidoside, 4'-OH, and C-2-C-3 double bond in naringin as structural determinants of its hrmA-inducing activity.

متن کامل

Mutation at different sites in the Nostoc punctiforme cyaC gene, encoding the multiple-domain enzyme adenylate cyclase, results in different levels of infection of the host plant Blasia pusilla.

The filamentous cyanobacterium Nostoc punctiforme forms symbioses with plants. Disruption of the catalytic domain of the N. punctiforme adenylate cyclase (CyaC) significantly increased symbiotic competence, whereas reduced infectivity was observed in a mutant with a disruption close to the N terminus of CyaC. The total cellular cyclic AMP levels were significantly reduced in both mutants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 6  شماره 

صفحات  -

تاریخ انتشار 2015